Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse tincidunt sagittis eros. Quisque quis euismod lorem. Etiam sodales ac felis id interdum.
我们平台提供多种表达系统,包括原核、昆虫和哺乳细胞表达,满足不同研究需求。纯化后的蛋白可以直接用于电镜样品制备。样品冷冻在极短时间内完成,可防止冰晶形成,从而避免样品结构的破坏。
We offer prokaryotic, insect, and mammalian cell expression systems for diverse research needs. Purified proteins are ready for electron microscopy sample prep. Rapid freezing prevents ice crystals, preserving sample structure.
我们平台提供多种表达系统,包括原核、昆虫和哺乳细胞表达,满足不同研究需求。纯化后的蛋白可以直接用于电镜样品制备。样品冷冻在极短时间内完成,可防止冰晶形成,从而避免样品结构的破坏。
We offer prokaryotic, insect, and mammalian cell expression systems for diverse research needs. Purified proteins are ready for electron microscopy sample prep. Rapid freezing prevents ice crystals, preserving sample structure.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse tincidunt sagittis eros. Quisque quis euismod lorem. Etiam sodales ac felis id interdum.
Get Started图像解析度受电子波长影响。电子的波长与其能量成反比,能量越高波长越短, 图像的解析度就越高。
As the accelerating voltage (V) increases, the wavelength (λ) of the electrons decreases. By manipulating the accelerating voltage, researchers can control the wavelength of the electrons, which in turn affects the resolution and other imaging characteristics in TEM.
负染电镜能够提供增强对比度的图像。主要用于观察样品中的颗粒性物质或生物大分子。通过使用金属盐对载网上的样品进行染色,从而增强样品的对比度。负染电镜技术适合用于早期样品颗粒筛查。
Negative staining electron microscopy enhances sample contrast for electron microscopy imaging. This rapid technique produces high-contrast images, ideal for initial particle screening.
Get Started300kV冷冻电镜的高能量电子束被加速并聚焦,通过样品时,由于其穿透能力强,可以穿透较厚的样品层。高加速电压能减少电子束对样品的辐射损伤,使样品在观察过程中保持其原始状态。
The 300kV electron beam, accelerated and focused, penetrates thicker samples due to its high energy. This high voltage minimizes radiation damage, preserving sample integrity.
从预处理后的图像中提取单颗粒并对颗粒图像进行二维分类,将相似特征的图像分组。
Individual particles are extracted from the preprocessed images. Then, 2D classification groups these particle images based on their shared features.
将多个二维投影图像组合起来,生成生物样品的三维结构模型。对初步生成的三维结构模型进行优化,包括去除噪声、提高分辨率和修正结构细节等步骤。
SPA algorithms combine multiple 2D projections to generate a 3D structural model of the biological sample. This initial model is then refined through noise reduction, resolution enhancement, and structural detail optimization.
SPA算法的应用需要结构计算专业知识,不同算法可能会产生不同的结果。我们独有的算发能够重构三维电子密度数据。
SPA algorithms require specialized structural computation knowledge, with results varying by algorithm. Our proprietary method can reconstruct 3D electron density data for structural determination.
根据电子密度图,我们构建精确的蛋白质结构模型。步骤包括:分析密度图细节,识别主侧链位置;利用软件算法拟合氨基酸序列;优化模型以匹配密度图;进行结构验证。这个精细过程为结构分析和功能研究提供可靠基础。
We construct detailed protein structure models from electron density maps through a multi-step process: analyzing map features, locating main and side chains, fitting amino acid sequences with software, refining the model, and validating the structure. This meticulous approach establishes a robust foundation for further structural and functional analyses.